Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause
نویسندگان
چکیده
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5 RM ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.
منابع مشابه
A Dynamic Model of Mercury's Magnetospheric Magnetic Field
Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's hel...
متن کاملFirst simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars
Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbation...
متن کاملRevised time-of-flight calculations for high-latitude geomagnetic pulsations using a realistic magnetospheric magnetic field model
[1] We present a simple time-of-flight analysis of Alfvén pulsations standing on closed terrestrial magnetic field lines. The technique employed in this study in order to calculate the characteristic period of such oscillations builds upon earlier time-of-flight estimates via the implementation of a more recent magnetospheric magnetic field model. In this case the model employed is the Tsyganen...
متن کاملFlux transfer events on the high-latitude magnetopause: Interball-1 observations
We present case and statistical studies of flux transfer events (FTEs) observed by Interball-1 on the highlatitude magnetopause. The case studies provide observations of FTEs in the cusp during periods of southward interplanetary magnetic field (IMF) orientation and on the magnetopause poleward of the cusp during periods of strongly northward IMF orientation. We interpret the former in terms of...
متن کاملModeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 1. Methodology and results of the 25 September 1998 peak main phase case
[1] We present a methodology for using the modular Tsyganenko storm magnetic field model (TS04) as a tool to investigate the response of magnetospheric currents to solar wind dynamic pressure enhancements during magnetic storms. We demonstrate the technique by examining the contribution of each model current to the observed dawn-dusk asymmetric ground H perturbation during a peak storm main pha...
متن کامل